Materials and techniques for new-generation systems of photovoltaic conversion
The increasing world-wide demand for
energy, enforced by swift economic development of emerging Countries
such as China, India and Brazil, is currently largely satisfied by
fossil combustibles, which call forward the emission of CO2 and other
pollutants. Sustainable development does require the usage energy
sources with lowest environmental impact, which are available for both
urban and rural areas, in developed and underdeveloped countries, as a
network of micro-distributed generators to respond to the increasing
demand for energy. Energy generation must rely on robust, fully modular
units and span the range from few watts to tens of megawatts. These
circumstances are met with photovoltaic technology, though the current
production cost of a single unit for each specific application
(grid-centralized, distributed, stand-alone) exceeds by a factor of 5
the price of an equally powerful conventional generation unit. Moreover,
even under favourable economic condition, assuming that the whole
production of silicon yearly produced all over the world would be
completely involved in the generation of photovoltaic cells, that would
be insufficient for production a non negligible portion (at least 1%)
of the national need.
Diffusion of photovoltaic energy is thereby prevented by such limiting
factors. Thus, only a big effort into research will be able to support a
suitable technological development:
- In the short term, it is mandatory to aim at the improvement of
production processes and of conversion efficiency, at the decrease of
process costs with cheap low-impact environment-compatible processes and
ultimately at the reduction of expensive prime materials. In this
scheme, the only method that can be currently pursued is the technique
of concentrated photovoltaic, namely the focalization of sunlight onto
low-size photovoltaic cells. Indeed, such method is currently employed
with high-efficiency silicon cells and constitutes an interesting
methodology, inasmuch as it allows an increase in conversion efficiency
and as well as a significant decrease in the quantity of used
photo-converting material. On the other hand, such scheme does not
afford significant improvement because of the limited energy range of
the photons for which a single-material cell can efficiently operate.
- In the long term, the research should promote the development of novel
devices, which are benefited by cross-fertilization with other
material sciences and high-technology industrial fields such as display
and aerospace industries. This effort will steer toward a new class of
materials with large-scale production and high conversion efficiency.
In fact, the target of photovoltaic in the mean term is the achievement
of conversion efficiency of the order of 30-40% at the rate of
Euro/m2, which is also referred to as third-generation photovoltaic or ,
alternatively with an efficiency figure about 5-10% but at the rate
15-40 Euro/ m2.
The present project aims at the development of new techniques and novel
materials for high-efficiency photovoltaic conversion that can be
produced over a large scale. The project naturally assumes the
concentration scheme and focuses to the split of sunlight into bands.
Due to usage of suitable dichroic filters each band is geometrically
separated in a number of beams from the others to form a beam and
diverted to a specifically designed semiconductor whose bandgap in
tuned to the energy of the photons in the beam.
The combination of concentrated photovoltaic with a system of
independent cells, which was recently proposed by some of the members in
this project, is highly innovative with respect to traditional being
studied semiconductor multi-junction devices because:
- it permits to prevent all the problems and technological drawbacks in the fabrication of a multi-junction;
- it allows to consider a wider class of cheaper and easily producible
materials, among which are the polymers, to accompany the traditionally
used silicon;
- it affords operation with no need for cooling of photo-sensing units.
The present project aims at seeking for new materials, other than those
that are currently in the stage of prototype, and novel techniques for
concentration that are eligible for photovoltaic conversion through
separation of sunlight by dichroic filters.